On Conservation of Scattered Energy and Angle in Radiative Transfer Computations
نویسندگان
چکیده
To compute accurately radiative transfer in anisotropicallyscattering media, conservation of both scattered energy and angle after discretization is required. Alteration of asymmetry factor (i.e., average cosine of scattering angles) due to angular discretization leads to a third type of numerical error, named as angular false scattering. The error that was known as “false scattering” is actually caused by spatial discretization and has nothing to do with scattering; and thus, it is more appropriate to be called “numerical smearing”. Five phase-function normalization techniques, designed to attempt to conserve scattered energy, angle, or both, are analyzed here using DOM and FVM for both diffuse and ballistic radiation, to determine their capability to mitigate errors and produce accurate radiative transfer. Comparisons with Monte Carlo benchmark predictions are used to gauge accuracy. The two normalization techniques that conserve both scattered energy and asymmetry factor simultaneously are found to result in substantial improvements in radiative transfer accuracy with respect to MC predictions and comparison to each other. Normalization for ballistic radiation situations is shown to be crucial. Normalization impacts FVM and DOM in similar manners, as the accuracy of both is equal. In terms of computational efficiency, it is found that the DOM is more efficient than the FVM when both have the same number of angular directions. INTRODUCTION In engineering problems where radiation is the dominant mode of heat transfer, such as high-temperature combustion and material processing [1-11], fire [12-15] and atmospheric radiation [16-19], renewable solar energy [20-22], space exploration [23-25], microwave and laser applications [26-38], accurate and complete solutions of the governing equation of radiative transfer (ERT) are desired. The integro-differential nature of the ERT makes analytical solution difficult [4, 5], and thus numerical methods, such as the finite volume method (FVM) [39-45] and discrete-ordinates method (DOM) [45-49], are preferred. Numerical methods have garnered increasing attention in the field of radiation heat transfer, as they provide cost-effective alternatives to costly experimentation and their efficiency and accuracy has been improved with the advance of computational technology.
منابع مشابه
Interaction of laminar natural convection and radiation in an inclined square cavity containing participating gases
Two-dimensional numerical study of flow and temperature fields for laminar natural convection and radiation in the inclined cavity is performed in the present work. The walls of the square cavity are assumed kept at constant temperatures. An absorbing, emitting, and scattering gray medium is enclosed by the opaque and diffusely emitting walls. The set of governing equations, including conservat...
متن کاملReduction of angle splitting and computational time for the finite volume method in radiative transfer analysis via phase function normalization
The commonly implemented splitting of solid angles to ensure scattered energy conservation in the finite volume method does not exactly conserve phase function asymmetry factor after directional discretization, leading to significant changes in scattering effect for radiative transfer analysis in highly anisotropic scattering media. In addition, use of a large number of split sub-angles results...
متن کاملCombined mixed convection and radiation simulation of inclined lid driven cavity
This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...
متن کاملRadiative heat transfer: many-body effects
Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...
متن کاملNormalization for Ultrafast Radiative Transfer Analysis with Collimated Irradiation
Normalization of the scattering phase function is applied to the transient discrete ordinates method for ultrafast radiative transfer analysis in a turbid medium subject to a normal collimated incidence. Previously, the authors have developed a normalization technique which accurately conserves both scattered energy and phase function asymmetry factor after directional discretization for the He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014